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atically enumerating nets of this type. Nets 61 and 64 
(Fig. 8) provide a nice example of a pair of nets with the 
same space group and unit-cell dimensions. 

In some of these nets, the skew quadrangles approach 
regular tetrahedra; if the tetrahedra were indeed regular, 
the nets would become 5-connected and have higher 
symmetry and higher density. This is perhaps most easily 
seen for net 60 (Fig. 7). With regular tetrahedra, the 
symmetry would be P42/mmc with a = 2, c = 2 + 21/2 
and vertices in 8 (o) 0, y, z with y = 1/4 and z = 0.1465. 
The density is 3% higher. In the conformation listed in 
Table 2, however, the next shortest distance (d 2 in Table 
2) is ca 20% longer. 

This work was supported by a grant (DMR 9120191) 
from the National Science Foundation. 
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Abstract 

X-ray diffraction from crystal surfaces and interfaces is 
described within the framework of the dynamical theory. 
The intensity distributions of specular and non-specular 
crystal truncation rods are interpreted with this dynamical 
approach. Difficulties encountered in the ordinary 
dynamical calculation for these rods are mentioned and 
the details of the numerical calculation procedure which 
overcomes the difficulties are given. The coordinates of 
dispersion surface, linear absorption coefficients and 
mode excitations of surface diffractions are calculated 
and the validity of this dynamical approach is discussed. 

1. Introduction 

Grazing-incidence X-ray diffraction (GIXD) from crystal 
surfaces and interfaces has been widely used for 
determining surface crystal structures since 1979 (Marra, 
Eisenberger & Cho, 1979). These include the structures 
of Si (111) 7 x 7 (Robinson, Waskiewicz, Fuoss, Stark 
& Johnson, 1986), Ge (111) c 2 x 8 (Feidenhans'l et al., 
1988), As/Si (100) (Jedrecy et al., 1990), Pb/Si (111) 
(Grey, Feidenhans'l, Nielsen & Johnson, 1989) and 
many others (Robinson & Tweet, 1992; Shimura & 
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Harada, 1993). Although a crystal surface is a two- 
dimensional arrangement of atoms, its relative position 
with respect to the crystal bulk involves the third 
dimension along the crystal surface normal. To probe 
this three-dimensional structure, in-plane scan and sur- 
face-normal scan are usually employed to gather the 
structural information parallel and perpendicular to the 
crystal surface, respectively. The latter, surface-normal 
scan, is sometimes called crystal-truncation-rod (CTR) 
scan in the literature (Andrews & Cowley, 1986; 
Robinson, 1986) because the scan is along the reciprocal 
rods which are the Fourier transform of a surface- 
truncated crystal in the reciprocal space (Fig. 1). This 
CTR scan is also a powerful tool to help solve interface 
structures on the atomic scale, for example, the structures 
of NiSi2/Si (111) (Robinson, Tung & Feidenhans'l, 
1988), Si/Si (111) (Robinson, Waskiewicz, Tung & 
Bohr, 1986) and SiO2/Si (111) (Kashiwagura et al., 
1987). Aside from the crystal structure determination, 
GIXD together with in situ experimental techniques also 
provides a means of studying surface order--disorder, 
melting and roughening transitions (Mochrie, Zehner, 
Ocko & Gibbs, 1990; Held, Jordan-Sweet, Horn, Mak & 
Feldman, 1989; Dosch, Mailander, Reichert, Peisl & 
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Johnson, 1991; Liang, Sirota, D'Amico, Hughes & 
Sinha, 1987). 

Although this well established diffraction technique 
has succeeded in determining surface/interface structures 
and explaining surface phenomena, there still seems 
lacking a rigorous and complete general theory to 
account for the diffraction intensity measured and the 
detailed diffraction mechanisms involved in surface 
X-ray diffraction. In the literature, kinematical theory has 
frequently been used to interpret experimental findings, 
where the idea of Born approximation was usually 
adopted (Vineyard, 1982; Dosch, Batterman & Wack, 
1986; Robinson, 1986). This approach suffers, however, 
from the inability to resolve the following two funda- 
mental problems: (i) the calculated intensity blows up at 
the exact Bragg diffraction position, and (ii) the 
kinematical approach does not take the crystal boundary 
conditions into account so that refraction effects cannot 
be handled properly. Hence, use of kinematical theory is 
limited only to analyzing diffraction data off the Bragg 
peaks. This shortcoming makes it necessary for dynami- 
cal theory to solve the problems mentioned, where the 
boundary conditions and refraction are considered 
naturally in the theory. In fact, attempts have been made 
to calculate the intensity distribution of rod scans using 
dynamical theory (Afanes'ev & Melkonyan, 1983; 
Colella, 1991; Caticha, 1993), but only limited to either 
specular rods, where the rods pass through the origin of 
the reciprocal lattice (see the rod O M  in Fig. 1) or a small 
portion of a non-specular rod (Fig. 1). For a specular rod, 
diffractions involve no in-plane momentum transfer. 
Recent reports by Nakatani & Takahashi (1994) and 
Caticha (1994), utilizing Darwin's treatment, fall into this 
category. Actually, as depicted in Fig. 1, most CTR rods, 
displaced from the origin O, are non-specular because the 
displacement vector, e.g. OG for the rod GL, introduces 
an in-plane momentum transfer for the incident X-ray 
beam. Interpretation of the diffraction intensities of these 
non-specular rods, though difficult, would be more 
desired since these rods carry structural information in 
both normal and in-plane directions. Very recently, the 
dynamical calculation for crystal surface/interface non- 
specular rods has been briefly reported by Gau & Chang 

(1994), where a general formalism has been given. 
However, because the detailed calculation procedure has 
not been included in that report owing to limited space, 
some useful dynamical parameters, such as the coordi- 
nates of the dispersion surface, linear absorption 
coefficients and excitation of mode of wave propagation, 
are not reported. It is the purpose of this paper to present 
all the details for this general dynamical approach so that 
the interpretation of surface/interface X-ray diffraction 
with various geometries can be carried out in a 
straightforward manner and the diffraction mechanism 
of GIXD rod scans can be understood in depth. 

2. Diffraction geometry and experimental scan 
schemes 

Since a specular rod is a special case of a non-specular 
rod, for simplicity we consider the non-specular rod GL 
perpendicular to the crystal surface to start with. Fig. 2 
depicts the diffraction geometry in which the relationship 
is shown among the incident and diffracted wave vectors 
ki(= CO) and kf(= AS) outside the crystal and the 
reciprocal-lattice points O, G and L, where O is the origin 
and G and L are on the non-specular rod GL. Point A lies 
on the crystal surface and CA is perpendicular to the 
crystal surface. OG, parallel to the crystal surface, is the 
reciprocal-lattice vector of the atomic planes G and 
GS - q is the momentum transfer along GL. A detector 
is placed along the kf direction. AG and AO are the in- 
plane components of k i and kf parallel to the crystal and 
the angle between the two is qg. k~ is the wave vector of 
the surface specularly reflected beam. 0 i and Of are the 
incident and the scattered angles measured from the 
surface. 0 is the angle between the vector OG and the 
tangent of the Ewald sphere at point O. During the rod 
scan along GL, the crystal and the detector are so 
oriented that 0 and ~o, namely 0 i and Of, are changing. The 
relationships between 0~, Of and 0, ~0 according to 
Feidenhans'l (1989) are 

sin 2 0f = sin 2 0 i + 4 cos 2 0 i sin 0c,(sin 0 - sin 0~) (1) 

sin 99 = (2 cos 0 sin 0c)/[1 - 4 sin 0c,(sin 0 - sin 0~)] 1/2, 

(2) 

0 

Crystal surface 

t G 

Fig. 1. Crystal truncation rods and reciprocal lattices. 

L 
Detector 

Fig. 2. Geometrical relation between the wave vectors and the crystal 
surface. 
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where 0G is the Bragg angle of the G reflection, which is 
also equal to arcsin[lOGI/2kcosOi] with k = 1/2, 2 
being the X-ray wavelength used. From (2), it is clear 
that during the rod scan the momentum transfer is 
varying from OG to OL while keeping the in-plane 
component always equal to OG. If 0 i = Of = 0, then 
0 = 0 G and ~o = 20. That is, the Bragg condition of the 
in-plane G reflection is satisfied. 

Inside the crystal, the wave vectors K o, K G and K L of 
the incident and diffracted beams are governed by the 
fundamental equation of the wave field, which will be 
discussed in the following section. 

Experimentally, rod scans can be performed with a 
four-circle diffractometer or a z-axis diffractometer 
(Feidenhans'l, 1989), where the z direction is along the 
crystal-surface normal. When the former is used, both 0 i 
and Of are simultaneously varying during the rod scan. If 
the latter is employed, 0i is fixed and only Of is varying. 
These two different scan schemes could lead to different 
diffraction intensity distributions for the rods. 

3. Theoretical consideration 

In terms of the dynamical theory of X-ray diffraction, the 
fundamental equation of the wave field takes the 
following form: 

2eM EM = ~ XM-N EN (3) 
N 

for M and N equal to O, G and L, where E M is the electric 
field of the M-reflected wave and 

XM -- -- [ e2 ,~2 / (mc 2 yrV)]F M , (4) 

2e M = (K 2 - k2)/k  2, (5) 

where m and e are the mass and charge of the electron, V 
is the volume of the unit cell and F M is the structure 
factor of the M reflection. According to the geometric 
relation, shown in Fig. 3, between the wave vectors K~ 
inside the crystal and the directions of the or- and zr- 
polarized components of each wave, the fundamental 
equations (3) can be written in matrix form as (Chang, 
1984) 

deriving (6): 

'~o" ~G = ~o" '~, = cos ~o', 

~o" bL = sin a sin ~o', 

~o" ~, = cos~, (7) 
~r o • ~r G = 1, 

Oo-~G = ~o .  ~, = oG. ~o = OG'~L = 0 ,  

where the angles ¢p' and a are defined in Fig. 3. 
For non-trivial values of E, the determinant of the 

matrix • must be null, which gives the dispersion 
relation between the wave vector K and the related 
angles Oi and 0i: 

Iol = 0 ,  (8) 

from which the coordinates of the tie point C' can be 
determined. To simplify the derivation, we introduce a 
variable g, related to the z component of K o normal to 
the surface as kg = Koz. 2e can then be expressed in 
terms of g when the tangential components of the wave 
vectors inside and outside the crystal at the surface 
boundary are conserved: 

-2Co = sin 20i - g2, 

- 2 e  G = sin 2 0f - g2, (9) 

- 2 e  L = sin 2 Of - g2 _ 4( l /2k  - g)( l /2k) ,  

where l = IGLI. Moreover, the angles ot and tp' shown in 
Fig. 3 can also be expressed as a function of g: 

cos ~o' = (cos O; cos 0 I cos ~0 + g2) 

X [(COS 2 0 i + g2)1/2(COS2 Of -~- g2)1/2]-1, (10) 

tan a = l cos OJ[k cos2 0f - g(l - kg)]. (11) 

The derivation of (10) and (11) is given in Appendix A. 
By substitution of (9), (10) and (11) into (8), the 
dispersion relation becomes a twelfth-order non- 
linear equation of g, which can be solved approximately 
with iteration procedures, except for some special 
situations. In practice, the Newton-Ralph method (Press, 

@ E  = 

Xo -- 2Co 0 X6 0 
o Xo - 2Co 0 X8 cos 

~0 G 0 XO -- 2eG 0 
XG cos ¢p' 0 X - 2eG 

XL cos a XL sin a sin ¢p' XL-G COS a 0 
0 XL COS ~t 0 XL-G 

xL cosa 0 '~ [Eo,,  
XL sin a sin tp' XL cos ¢ / [ E°'~ 

XG-L COS O~ O [ EGo 
0 X [ ~ EG,~ 

Xo 2eL ao-L - ~ G ,  
0 X o - 2 e L /  EL. 

= 0, (6) 

where Oo and b G are defined to be perpendicular to the 
plane defined by the vectors K o and K~ and ~ is parallel 
to the OGC' plane. The polarization unit vectors follow 
the relations ~M x K M = oM for M = O, G and L. The 
following inner products of & and ~ have been used in 

Teukolsky, Vetterling & Flannery, 1992) is used in our 
calculation, which will be reported in the next section. 

There are twelve roots for (8), among which only six 
roots, whose imaginary parts are non-negative, are 
physically meaningful if the crystal is semi-infinite. 
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Therefore, within the crystal there are six modes of wave 
propagation with six different g values or different wave 
vectors K o. If a thin overlayer is considered, all the 
twelve modes need to be included in the calculation. The 
real part g' of g determines the coordinates of the tie 
point on the dispersion surface for given 0 i and Of, while 
the imaginary part g" of g yields the linear absorption 
coefficient,/x = 4rrkg". To clearly reveal the geometry of 
the dispersion surface, we show schematically in Fig. 4 
the overall picture (Fig. 4a) and a cross section (Fig. 4b) 
of the dispersion surface in the momentum space. In Fig. 
4(a), the three Ewald spheres centered at the reciprocal- 
lattice points O, G and L intersect with one another. The 
G reflection and the L reflection occur at the tie points A 
and B, respectively, where the two corresponding Ewald 
spheres intersect with the sphere centered at the point O. 
In Fig. 4(b), a close up of the dispersion surface is given. 
The azimuthal angle A Y about the origin O, correspond- 
ing to the changing 0 i and Of in the rod scan, is defined as 

A y = y o - y  

= arccos(h/2a) - arccos[(a 2 + h: - bZ)/2ah], (12) 

where )to = LLaOG, a = cosOi/2,  b = cosOf /2  and h is 
the horizontal component of the momentum transfer, i.e. 
h = OG. For a z-axis diffractometer at small 0i, 

AF ~ arccos(2h/2) - arccos{[(q/d)  2 + h212/2h} (13) 

and, for a four-circle diffractometer (i.e. Oi = Of), 

A)t = arccos(2h/2) - arccos(h/{2[l - (q/2d)2] I/2 }), 

(14) 

where q and d are the normal component of the 
momentum transfer and the lattice spacing normal to 
the crystal surface. As shown in Fig. 4, the loci of the tie 
points of the six modes are indicated schematically as the 
curves on the cylindrical surface spanned by the Ko(j) 
vectors centered at the point O, where La is the Laue 
point for the reciprocal-lattice points O and G. For each 
g, the corresponding eigenvector provides the amplitude 

¢ 

O ~ r o  

Fig. 3. Definition of the polarization unit vectors. 

oG 

ratio among the wave fields E. The absolute amplitudes 
can be determined as usual from the following boundary 
conditions, i.e. the continuities of the normal components 
of D and B and of the tangential components of E and H 
at the crystal boundary (z = 0): 

(Coo - Cos,, ) sin 0 i = y]~[kg(j)/Ko(J)lEoo(J), 
J 

eoo + eoso = y']~[Ko(j)/klEoo(J), 
J 

eo,~ + eos,~ = ~ Eo,~(J), 
J 

(eo~ - eos~) sin Oi = ~ ,  g( j )Eo~( j )  
J 

for the forward transmitted O waves, 

(15) 

-eoo sin Of = y'~[kg(j) /Kc(j)]Eo, ,( j)  , 
J 

eco = y'~[Ka(j) /klEao(j) ,  
J 

ec, ~ = y~ Ea,~(j), 
J 

-ea,~ sin 0 I = ~ g(j)Ea,~(j) 
J 

for the G reflected waves, and 

(16) 

--eL, , sinOf = y~{k[g(j)  - I /k]/KL(j)}EL,,(j)  , 
J 

eL,, = Y]~[KL(j)/k]E~(j),  
J 

(17) 
-eL,~ sin Of = }--~[g(j) - l/k]EL,~(j), 

J 

eL~ r = ~_, EL.(J) 
J 

for the L reflected waves, where e and E are the wave- 
field amplitudes outside and inside the crystals, respec- 
tively, and eos. and eos,~ are the a and rr components of 
the surface specularly reflected wave fields, respectively. 
For an infinitely thick crystal, the variables eoso, eos, ,  
e~o, ea, ~, e~,  eL, and the six Eoo( j  ) withj  = 1-6 can be 
determined by the 12 equations given in (15), (16) and 
(17). 

Finally, the intensity of the rod for given 0 i and Of can 
be calculated as 

l ( A y )  =l(Oi ,  Of) 

= [ ( [ e G o  + eLa[ 2 n t- leG.  n t- et.,~12) sin Of] 

x [(leool 2 + leo,~l 2) sin Oi] -I . (18) 

For a thin overlayer, the intensity of the rod scan can be 
calculated in the same way except that the 12 modes of 
wave propagation need to be considered and the effective 
surface structure factor F(Q)  and the phase factor 
exp(iQr)  should be included in the structure factor FM 
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of (4), where r is the relative displacement of the layer 
with respect to the substrate and Q is the momentum 
transfer. Moreover, for very accurate calculations and for 
the intensity distribution along the direction not lying in 
the OGL plane, more reciprocal-lattice points in the 
vicinity of the G point could be included. 

By knowing the wave-field amplitudes E, the 
excitation Ex(j) of mode j of wave propagation and the 
excitation ExM of beam M can be calculated as 

Ex(j)  = ~ E~t(j)EM(j)/lEol2(sin Of / sin 0/) (19a) 
M =O,G,L 

ExM = ~2 E~(j)EM(j)/IEol2(sinOf/sin 0~), (19b) 
J 

where E~t is the complex conjugate of EM. The excitation 
of mode is equivalent to the modulus of the Poynting 
vector associated with mode j. From the mode excitation, 
linear absorption coefficients and dispersion surface, one 
can also calculate the X-ray penetration depth ~'(j) for 
each mode, as ~ ' ( j )=  1/kg"(j), and the resultant pen- 
etration depth ~', can be determined as 

if, = ~ ~(j)Ex(j). (20) 
J 

[ ~ Surface 
normal 

/ / / /  \ 

(a) 

Dispersion ,.._..__--~, 
surface / " " " ' ~ . - - ' ~ - ~  K~o J} I L 

Crystal surf~c~ 

(b) 
Fig. 4. (a) Overall view and (b) close-up view of the dispersion surface 

involved in the rod scan. 

Table 1. Refined g' and g" values 
g' g" 

1 0.2 ! 6078363 0.000034648 
2 0 .216149654 0.000026428 
3 0 .216307873 0.00(1008199 
4 0 .216379069 0.0(K)(K~)I 2 
5 1.189635397 0.000017312 
6 I. 189635520 0.(XX)021422 

4. Numerical calculations 

The theoretical consideration given in the previous 
section is very similar to the conventional dynamical 
theory for multibeam diffraction except that a numerical 
calculation scheme needs to be employed in order to 
approach asymptotically and eventually find the correct 
eigenvalues for (8). In this section, we will concentrate 
on the numerical calculation to determine the eigen- 
values. For the overall dynamical calculation in general, 
readers are referred to the standard multibeam calculation 
procedures reported in the literature (e.g. Colella, 1974; 
Chang, 1984). 

We use the Newton-Ralph method (Press et al., 1992) 
to find the eigenvalues g. The difficulty encountered is 
that the calculated g converges to the different roots of 
(8) with different starting (initial) values. In other words, 
for given 0 i and Of, the final values of g depend on the 
initial values of g. In addition, g is complex. Therefore, 
we are facing a two-dimensional non-linear equation of 
g. To overcome the uncertainty of finding the final 
correct values of g, we simply calculate g for each 
possible initial value, the real g' and the imaginary g", 
and scan over all possible points in the g'g" plane to find 
the most probable values. For the conservation of the 
total energy, the allowed g values should be those with 
g" >_ O. Usually, the most probable values determined are 
still different from the correct eigenvalues and need to be 
refined by substituting the probable values into (8) so as 
to have the IOl value as close to zero as possible. 
Normally, the order of magnitude of g is the same as that 
of s in0 i or s in0 I, namely close to unity. When the 
accuracy in refining g reaches the level of 10- ~ and the 
value of the determinant I~i is very close to zero, the 
refined g values are considered as the correct eigenvalues 
for (8). 

As an example, for the W(200) rod, we set the initial 
value as gi = IRI exp(i0) in the Newton method. I fg i lies 
in the first or the fourth quadrants, then g tends to 
converge asymptotically to the roots with g" > 0. If gi 
lies in the second or the third quadrants, g tends to 
approach the roots with g" < 0. For this reason, we only 
scan our initial gi values over the quadrants I and IV. If 
we set the scan ranges for R and 0 from 0 to 2 and from 
- 9 0  to 90 ° , respectively, then the final six refined roots 
at  0 i : Of : 12.5 ° can be calculated, and these are listed 
in Table 1. 

Why does the conventional dynamical theory- fail to 
calculate the intensity distribution of a non-specular rod? 
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Table 2. Real and imaginary parts of  the structure 
factors (Cu Kot I ) 

C r y s t a l  R e f l e c t i o n  R e a l  pa r t  I m a g i n a r y  pa r t  

Si 0(O 113.9520 2.64 
111 - 6 0 . 9 8 7 7  - 1.8667 

NiSi 2 000 214.1280 4.6760 
1 I 1 82.6660 2.0360 

W (XX) 135.9040 11.1540 
200 - 9 6 . 8 6 7 6  - 11.1540 
202 80.9478 I 1.1540 

The reason is the following: suppose we do not employ 
the Newton-Ralph method to find the eigenvalues in an 
asymptotic way, we could rather assume as an approxi- 
mation that each mode has the same path length in the 
crystal so that g in (10) and (11) can be substituted by 
sin 0;. With this approximation, (8) can be expanded as a 
linear equation of 12th order in g. Solving this poly- 
nominal equation is equivalent to finding the eigenvalues 
of the following asymmetric matrix B of rank 12 
(Colella, 1974): 

which implies that 

holds, with 

B =  ( CII C°)0 ' (21) 

• = - I g  2 + C l g  + C 0 = 0 (22) 

C 1 =  

0 0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

i 0 0 0 0 0 
0 0 0 21/k 0 
0 0 0 0 21/k 

(23) 

demonstrates why the conventional dynamical theory, 
including the generalized approach recently reported by 
Stepanov (1994) and Stepanov & K6hler (1994), could 
not account for the intensities of the whole rod. The use 
of an iteration procedure could be one of the solutions to 
this problem. 

5. Resu l t s  a n d  d i s c u s s i o n  

The dynamical calculations include the intensities of 
NiSi2/Si (111) specular rod and W (200) non-specular 
rod for CuKot I radiation. The input data are the X-ray 
wavelength used, 2 =  1.540562 A, the structure factors, 
and the angles 0 i and Of, which are related to the 
momentum transfer. The structure factors used are listed 
in Table 2, where the imaginary parts are deduced from 
the data of anomalous dispersion given in International 
Tables for X-ray Crystallography (1974) and the 
temperature factor (at 298 K) are included. 

Fig. 5(a) shows the calculated intensity distribution of 
the NiSi2/Si (111) rod with the dynamical approach (the 
solid curve), the kinematical (the dashed curve) and the 
kinematical plus Fresnel reflectivity (tile dot-dashed 
curve). The experimental curve indicated by squares is 
taken fi'om the report by Robinson et al. (1988) for 25 
thick NiSi 2 on Si (111), where both 0 i and Of are varying 
during the rod scan. Since this specular rod involves only 
the 111 reflection with no in-plane momentum transfer, 
(8) can be solved analytically. Owing to the sample 
system consisting of an overlayer NiSi 2, 25,4, thick, and 
the Si substrate, the dynamical calculation procedures 
presented above are employed to take care of the 
diffractions from both the overlayer and the substrate. 
The kinematical calculation is carried out by following 

C 0 = 

( Xo + sin20i 0 X~ 
0 Xo + sin20i 0 

Xa 0 Xo + sin20Z 

0 XG cos ~0' 0 

XL COS O/ XL sin a sin ~o' Xt-c,, cos a 

0 Xt COS ~0' 0 

0 XL cos ot 0 
X?, cos ¢p' XL sin a sin ¢p' XL cos ¢p' 

0 Xa-L COS 0~ 0 

Xo + sin2 Of 0 X~-C 

0 XO + sin2 Of - 4(1/2h) 0 

XL-O 0 Xo + sin2 Of 
-4(1/2h) 2 

, (24) 

where I = identity matrix and 0 = null matrix. 
As is well known, the eigenvalues of such an 

asymmetric matrix equation cannot be accurately deter- 
mined and the inaccuracy increases as the Euclidean 
norm (Press et al., 1992) increases, where the Euclidean 
norm is defined as the sum of the squares of all the 
elements in the matrix B. As can be seen from (21) and 
(24), the Euclidean norm of B increases when 0 i 
increases. Therefore, this approximation is valid only 
for cases involving small 0 i. In fact, the non-specular rod 
scans involve a large angular range for Oi and Of. This 

the equation given below: 

l(q) =CtlF(Q)12{[sin2(qlalNl/2) sin2(q2a2NJ2)] 

x [sin2(qlal/2) sin2(q2a2/2)4 sin2(qa3/2)] -1 }, (25) 

where ql, q2 and q are the three components of the 
momentum transfer Q and q is normal to the crystal 
surface. N 1, N 2 and N 3 are the numbers of crystal unit 
cells along the ql, q2 and q directions and a and C t are 
the lattice constants and the proportional constant, 
respectively. F(Q) is the effective surface structure factor. 
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As mentioned in the previous section, the kinematical 
theory, which does not consider the boundary conditions, 
cannot therefore handle refraction and reflection caused 
by the boundary between two media. For this reason, we 
add the Fresnel reflectivity to the kinematical calculated 
intensities for comparison. As can be seen from Fig. 5(a), 
the kinematical plus Fresnel reflectivity curve well 
simulates the dynamical curve in the region off the 111 
reflection peak position, where refraction effects are 
dominant. Near the 111 peak, both the dynamical and 
kinematical curves are coincident with the measured 
curve. At the peak, the kinematical intensity goes to 
infinity. Owing to the lack of the measured peak intensity 
in the work of Robinson e t  al .  (1988) for comparison, we 
then carried out the intensity measurement on a 600,~ 
thick NiSi 2 layer on the Si (111) surface with Cu Kct l 
radiation using a rotating-anode X-ray source and a five- 
circle diffractometer. Fig. 5(b) shows the measured and 
the dynamical calculated intensity distribution of the rod. 
The peaks A and B are due to Si and NiSi 2, respectively. 
The experimental broadening due to the horizontal beam 
divergence of 0.14 ° , the vertical angular resolution of 
0.06 ° and the crystal mosaicity of 0.01 ° are convoluted 
with the dynamical calculated profile. Fairly good 
agreement between the measured and the calculated 
profiles is obtained. Owing to the weak scattered 
intensity off the peak, the statistical errors for the tails 
are large compared with the peak intensity. 

Fig. 6 shows the intensity distributions of a non- 
specular rod of W (200) surface. The solid and dashed 
curves are the dynamical and the kinematical calculated 
results and the measured data (the squares) are taken 
from the literature (Robinson, 1986). Both 0 i and 0f vary 
during the scan. Since this case involves the excitation of 
two reflections, 200 and 202, the dynamical calculation 
with the Newton-Ralph method is necessary to find the 
correct eigenvalues for g because the conventional 
dynamical theory fails to describe this non-specular 
rod. Since the detailed experimental conditions were not 
reported by Robinson, Waskiewicz, Tung & Bohr 
(1986), we assume in the dynamical calculation that the 
instrumental broadening is a Gaussian which is com- 
posed of the beam divergences and the crystal mosaic 

0 f . . . .  ,a, 
'~=°" -3~ qqq 

0.40 0.65 0.90 1.15 1.40 

6.5 

A Bib) 4.5 

2.5 

1.0()25 1.0250 

¢3 

q (r.l.u.) 
Fig. 5. Calculated and measured intensity distributions of NiSi2/Si 

(111) rod scans: (a) 25A NiSi 2, and (b) 600A NiSi 2. 

spread and the latter is also a Gaussian with half-width 
A, A being a function of the penetration depth (, i .e.  

A(() = A{(1 + 6 ) - - e r f [ ( ( - - ~ o ) / 2 1 / Z A o ] } ,  (26) 

where A, 6 and A are the limits, i .e.  A = A s as ( ~ oo 
and A = A F as ( --+ --oo, and 6 and A take the values 

8 = 2 / [ A F / A  s - 1], 

A = A s ~ 3 .  

This assumption of the mosaic spread as an error 
function is to some extent reasonable because from 
(26) the width of an in-plane diffraction peak is larger 
than that of an off-plane peak. For convenience, we do 
not use the dynamical penetration depth but the 
kinematical one in the calculation to simplify the data 
analysis. The latter is defined as (Dosch, Batterman & 
Wack, 1986) 

where 

( = 1 /[2rr( l  i + If)], (27) 

I i = 1/21/2{(2A -- sin 20i) 

+ [(sin 2 oi - 2za) 2 + (2A' )2]~/2}  t/2, 

If = 1/2l/2{(2A -- sin 2 Of) 

+ [(sin 2 Of - 2A) 2 + (2A')211/2} 1/2. 
The quantities A and A' are the corrections in the 
refractive index, i .e.  n = 1 - za - i A ' .  

The convolution of the dynamical calculated profile 
and the instrumental broadening with A s --0.15 °, 
A F = 1.2 ° and A o = 200 A gives the resultant calcu- 
lated profile. In addition, in order to estimate in a simpler 
manner the crystal-surface roughness from this non- 
specular rod, we use the multiplication of the calculated 
profile with the roughness fl, defined by Robinson (1986) 
as the final form for the dynamically calculated intensity 
profile, though a more rigorous treatment of surface 
roughness has been proposed (Harada, 1993). As shown 
in Fig. 6, the kinematical curve with fl = 0.46(1), 
corresponding to a roughness of 1.05 A, is less well 
fitted to the experimental curve than the dynamical curve 
with f l = 0 . 2 5 ( 1 ) ,  corresponding to 1.98,~, surface 
roughness. Moreover, at the peak positions the kinema- 
tical calculation blows up. This fact causes a serious 
problem in analyzing the surface diffraction data because 
in the literature most surface diffraction data have been 
analyzed with the kinematical theory, which provides no 
definite scales for the peak intensity and the momentum 
transfer (the peak position). The appropriateness of the 
best-fitted kinematical curve is therefore questionable. 
On the contrary, the dynamical theory gives absolute 
scales for the intensity and the momentum transfer. 
Parameters, such as the surface roughness, determined 
from the dynamical fitting to the peak width and peak 
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height are in principle more reliable than those 
determined from the kinematical fitting. 

Figs. 7 and 8 show the calculated dispersion surface, 
the linear absorption coefficients and the mode excitation 
at 0 i = 0.7 ° with varying 0¢ for the W (200) rod (Fig. 6). 
Fig. 7(a) shows the six dispersion curves versus  A F  at 
0 i = 0.7 °. Since the curves of modes 1 and 2 are very 
close to each other, we therefore plot a single curve to 
represent the pair of the closely spaced dispersion curves. 
The two points A and B are the positions at which the 200 
and 202 reflections take place, respectively, i.e. A y  = 0 
and 45 °. The calculated intensity distribution versus  A F 
is given in Fig. 7(b). The corresponding excitations of 
beam Ex M for M = O, G and L are shown in Fig. 7(c), 
where the summation is taken over all the modes. The 
excitation of the direct beam is always very strong 
because the energy flow in the O direction comes from 
the incident beam and decreases at Ay  = 45 ° where the 
202 reflection takes place. The G and L beams are mostly 
excited at the (200) and (202) positions, as expected. Fig. 
7(d) shows the excitations of modes 1 and 2, namely 
Ex(j) for j = 1 and 2, where the sum is over all the 
diffracted beams. As can be seen in this figure, mode 1 is 
much more strongly excited than mode 2 and the others, 
i.e. modes 3, 4, 5 and 6 (we only show here the two 
modes with appreciable excitation). Both the excitations 
of modes 1 and 2 have, respectively, a minimum and a 
maximum value in between the 200 and 202 positions, 
i.e. Ay -- 30 °. Both the excitations of modes 1 and 2 
exhibit a complementary feature between the two, 
namely, the sum of the two excitations is a constant 
and at Ay  -- 45 ° mode 1 is slightly peaked while mode 2 
has a dip in excitation. This is due to the presence of the 
202 reflection. 

Fig. 8 shows the close up of the dispersion surface, the 
linear absorption coefficients and the mode excitations 
near the two positions A and B of Fig. 7(a). As shown in 

- 2  

- 3  

- 4  

- 5  

- 6  

- 7  

--8 

- 9  

20q 

0 0.5 1.0 !.5 2.0 

q (r.l.u.) 

Fig. 6. Calculated and measured intensity distribution of W (200) rod 
scan (solid curve: dynamical calculation with 1.05,~, surface 
roughness; dashed curve: kinematical calculation with 1.98,~, 
roughness). 

Fig. 8(a) near the 200 reflection, the dispersion curves 
exhibit the distorted hyperbola for the transmitted 200 
reflection, where the distortion results from the cut of the 
dispersion surface normal to the crystal surface (see Fig. 
4). Fig. 8(b) shows the linear absorption coefficients of 
the six modes. Only modes 1 and 3 contribute to the 
abosrption as referred to the mode excitations shown in 
Fig. 8(c). The asymptotic # approaches the ordinary 
linear absorption value at 0 i = 0.7 °, /% = 
4n'Im[k(n 2 - cos 20i) 1/2] ~ 4 x 105 cm -l  (where n 2 = 

1 + Xo), as the position far from the 200 reflection point, 
i.e. for large A F. Figs. 8(d)-(f)  show the dispersion 
curves,/z and Ex(j) for the 202 reflection near the point 
B. The dispersion curve of mode 1 in Fig. 8(d) shows a 
resonance-like curve, which is a characteristic of a 
Bragg-type reflection, namely, the two branches of the 
hyperbola are connected by the solution curve (Chang, 
1977) due to the 202 total reflection. Indeed, the linear 
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Fig. 7. Calculated dispersion curves (a), intensity distribution (b), 
excitation of beam (c), and excitation of mode (d) of the 
W (200) rod. 
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absorption coefficient of mode 1 is peaked in this total 
reflection region, as expected. The asymptotic value is 
also about 4 x 10 7 m -] as A y  is far away from the 202 
reflection position (Fig. 8e). Again, mode 1 is the most 
excited mode in the diffraction process and is peaked 
near A y = 45 ° when the 202 reflection occurs (Fig. 8f). 
From these figures, we learn that the dispersion surface, 
the linear absorption coefficients At and the excitation of 
mode Ex(j) remain their two-beam diffraction characters. 
Therefore, the diffraction in the rod scan is nothing more 
than a coalescence of a glancing Laue-type and an 
asymmetric Bragg-type reflection. 

Since the kinematical theory cannot account for the 
intensities at the diffraction peak positions for surface 
X-ray diffractions, the dynamical approach presented 
here needs to be used to calculate the peak intensities. An 
immediate question that can be asked is: within what 
angular or momentum-transfer range near the peak is the 
use of the dynamical theory a must? According to the 
derivation given in Appendix B, this range is ca 
klxLxLI/[8 sin 2 0L(sin OL -- sin 0i) ] from the peak of the 

L reflection involved, where OL is the Bragg angle. For 
the W (200) case, the 202 reflection within 0.02 
reciprocal-lattice units from the peak must be treated 
by this dynamical approach. For stronger reflection and 
smaller Bragg angle 0 L, this range is wider. That is, the 
kinematical theory is invalid in this range. 

6. Concluding remarks 

In conclusion, we have demonstrated in detail the 
dynamical calculation procedure for the intensity dis- 
tributions of surface X-ray diffraction. The approach is 
quite general which can be applied to specular and non- 
specular surface rod scans for crystal surfaces and 
overlayers. In this paper, we have also pointed out the 
invalidity of the kinematical theory and the difficulties 
encountered by both the kinematical theory and the 
conventional dynamical theory in describing X-ray 
diffraction from surfaces and interfaces. In addition, the 
calculations for the dispersion surface, mode excitation 
and absorption give a better insight into the diffraction 
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mechanism involved in the surface diffraction which 
differs considerably from the diffraction of crystal bulk. 
Moreover, the calculation procedure proposed provides a 
useful means of analyzing crystal surface roughness and 
penetration depth from the measured diffraction data. 
Through this dynamical calculation, the scale of intensity 
versus momentum transfer can be absolutely defined. 

It should, however, be mentioned that in the present 
analysis of surface roughness we have taken an over- 
simplified step in the dynamical calculation. For a more 
rigorous approach, proper boundary conditions consider- 
ing the presence of surface roughness should be derived 
both for the dispersion relation and the wave-field 
amplitudes. This is, of course, not an easy task but 
could in principle provide a detailed microscopic picture 
on diffraction from a rough surface. 

The authors are indebted to the National Science 
Council for providing financial support. One of us (TSG) 
is very grateful to the same organization for a fellowship 
during the course of this study. 

APPENDIX A 
Derivation of equations (10) and (11) 

Referring to Fig. 9, Ko// ,  Koz  and Kc// ,  K~z = (MG)  are 
the components parallel and perpendicular to the crystal 
surface of the wave vectors K o and K~, respectively. 
With the assumption that Ko// is along the x axis, the 
crystal surface normal is in the z direction and the 
reciprocal-lattice vector OG lies in the xy plane, K o and 
K c can be expressed as 

K o = (k cos 0 i, 0, -Koz  ), (A1) 

K~ = (k cos Of cos 99, k cos Of sin 99, - K o z  ), (A2) 

where the relations K~ = K o + OG and Igozl = Ig~zl 
hold. Hence, the angle 99' between K o and K~ takes the 
form 

cos 99' = (K o • K c ) / I g o l / I g ~ l  

= (k 2 cos 0 i cos 0f cos 99 + K~z)  

× {[k 2 cos ~ o, + ro~zl'/2[k 2 cos 2 % + Ko%]'/~} - ' .  

(A3) 

L 

\ \  , 2' 

C y i I 
~ - . I  x 

~ ~ . . ~ ~  Koz - - ~  ........... 

/ o Ko "-~ 

Fig. 9. Geometry for the derivation of equations (10) and (11). 

By substituting Koz by kg, (10) is then obtained. 
From Fig. 9, 

ot -- / L C M  + l M C G  

= a r c t a n [ ( / -  K o z ) / k  cos 0i] + a r c t a n ( K o z / k  cos Of), 

(A4) 

where I = I G L I - - I K L - K ¢ ; I .  Since t a n ( a + b ) =  
(tan a + tan b)/(1  - tan a tan b), tan c~ can be written as 

tan c~ = lk cos Oi/[k 2 cos 2 0 I - kg(l  - kg)], (A5) 

where the relation Koz -- kg has been employed. Hence, 
(1 1) is obtained. 

APPENDIX B 
Derivation of the angular range within which the 

kinematical theory is invalid 

For simplicity, we consider the case involving only two 
reciprocal-lattice points O and L, where the reciprocal- 
lattice vector OL is perpendicular to the crystal surface. 
The fundamental equation for the wave field of this two- 
beam diffraction can be written as 

(Xo + sin20i - g2)Eo + XLEc = O, 
(B1) 

XLEo + [Xo + sin20i - -  (g - L/k)2]Ec = O, 

where L = lOLl. The corresponding dispersion equation 
takes the following form: 

g4 _ 2bg3 + (b 2 _ 2a)g2 + 2abg + a 2 - ab 2 - c = 0, 

(B2) 

where a = Xo + sin:0/, b = L / k ,  and c = XLXL. The 
solutions of (B2) are 

g = (b + {b 2 + 4[a + (ab 2 + c)1/2]}1/2)/2. (B3) 

If the crystal is semi-infinitely thick and the crystal 
position is set far from the Bragg diffraction position, 
only the two solutions given below, out of the total four 
roots, are physically significant and are close to the 
kinematical form: 

g(1) "~ (X~) + sin20i) 1/2 = al/2, 
(B4) 

g(2) _~ L / k  + (X2o + sin: Oi) !/2 = b + a 1/2 

Employing the boundary conditions 

eo + eos = Eo(1 ) + Eo(2), 

e o sin Oi - eos sin 0i = g(1)Eo(1)  + g(2)Eo(2) ,  

eL = EL(1) + EL(2), (B5) 

- e  L sin0; = {[kg(1) - L]/k}EL(1 ) 

+ {[kg(2) - LI/k}EL(2), 

and assuming that Eo(1 ) = ~(1)e L and Eo(2 ) = ~(2)e L, 
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the wave-field amplitude eL can be determined as 

e L = (2 sin Oi)eo/{[g(1 ) + sin 0i]~(1) 

+ [g(2) + sin 0i]~(2)}, 

where 

(B6) 

~( 1 ) = ( { [ g ( 1 )  - -  b] E - a}  / XE) 

X {[r(2) + sinOil/[r(2) - r(1)]}, 

~(2) ~ {x~ /[g2(2) - a ] }  

x { [ F ( 1 )  + sin Oil/[ F(1 )  - F ( 2 ) ] }  

and 

F ( 1 ) - -  g ( 1 ) - b ,  F ( 2 ) - -  g ( 2 ) - b .  

By substituting g(1) and g(2) of (B4) into the two terms 
involved in the denominator of (B6), we obtain 

~(1)[g(1) + sin Oi] ~. (8 sin E Oi/XL ) 

x [sin 0 L - (Xo + sinE Oi)l/E], 

~(2)[g(2) + sin Oi] ~ [XL(sin 20L -- sin 20i)] 

x [2sin E OL(SinO L + sin 0i)] -1. 

Clearly, 

and 

~(1)[g(1) + sin 0i] >> ~(2)[g(2) + sin 0i] 

el. ~--(2sinOi)eo/{[g(1)+sinOi]~(1)}.  (B7) 

From (B1) and (B5), we obtain 

~(1) = {[b E - 2b(a)l/E]/xL}[(al/E + sinOi)/b ]. (88) 

By substituting (B8) into (B7), et. becomes 

et. -- [2 sin Oi/(a 1/2 -~- sin Oi)][XL/(b E - 2bal/2)] 

x [b/(a lIE + sin Oi)] 

~-- 1/(4sinOi){XL/[sin01 - (Xo + sinZOi)l/z]}, (B9) 

where 2sin0L = L / k  o = b. Equation (B9) is nothing 
more than a kinematical expression (Caticha, 1993). 
Therefore, up to now we have derived the kinematical 
expression (B9) from the dynamical theory. The validity 
of this derivation relies on whether the conditions 
imposed by (B4) hold. In other words, we can start from 
(B3) and look for the condition under which the 
eigenvalue g approaches the kinematical values given 
in (B4). 

For simplicity, we consider only one of the solutions 

g(1) = (b - {b 2 + 4[a - (ab 2 + c)1/2]}1/2)/2. (B10) 

I fc  = 0, then g( l )  = a lIE and (B4) holds. In general, c is 
not equal to zero but c = I XLXLI << 1. Hence, 

{ b 2 + 4 [ a -  (ab2+c)l/E]} I/2 ~ b -  20 !/2 - c / [ a l / E b ( b -  2a  1/2)] 

and 

g( 1) -- a 1/2 + cl[Eal/Eb(b - 2al/E)] 

-- a 1/2 + ZlR. (Bl l )  

Obviously, (B l l) approaches (B4) if AR << 0, where 

A R  = (XLXL)/{8(Xo + sin E Oi) I/E sin 0 L 

x [sin 0L -- (Xo + sin2 0i)1/2]} 

(XLXL)/[8 sin 2 0L(sin 0L -- sin Oi)]. (B12) 

If the momentum transfer lies in the range k A R ,  with 
AR :/: 0, then the kinematical theory is invalid. A similar 
proof can be found in Zachariasen (1967). 
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Abstract 

The Laue technique is suitable to study effects that 
depend on wavelength such as absorption, anomalous 
dispersion or secondary extinction. The accuracy of 
the measured integrated intensities for X-ray structure 
determination is comparable with measurements of con- 
ventionally collected data. The present paper describes 
and discusses the results of a single-crystal data col- 
lection with a Laue diffractometer. The results obtained 
from the Laue data are in very good agreement with the 
results from conventionally collected data. 

Introduction 

The availability of synchrotrons as white-radiation X-ray 
sources of high spectral brilliance is the reason for recent 
developments in Lane diffraction techniques for data col- 
lection, especially in the field of protein crystallography. 
Several two-dimensional detector systems are in use, 
such as films (e.g. Rabinovich & Lourie, 1987), image 
plates (e.g. Miyahara, Takahashi, Amemiya, Kamiya & 
Satow, 1986), multiwire proportional chambers (e.g. 
Baru et al., 1978), the FAST system (Bartunik & 
Borchert, 1989) and others (International Tables for 
Crystallography, 1992). 

Since it is the primary intention in this field to 
increase the speed of data collection, less attention is 
paid to the accuracy of a single measurement. Only one 
attempt (Sakamaki, Hosoya & Fukamachi, 1980) has 
been made to incorporate the Laue technique into an 
ordinary four-circle-diffractometer device. The present 
authors reported in a series of short communications on 
the hardware development of devices suitable for this 
purpose (Lange & Burzlaff, 1991a,b). 

It is the intention of this paper to report first results 
on the basis of a medium-sized inorganic structure, to 
compare the data with a data set collected in the classical 
way and to discuss the results and the technique in 
comparison with the work of Sakamaki et al. 

Measurement of integrated intensities 

Single-crystal X-ray diffraction with white radiation dif- 
fers from the monochromatic technique in the following 
ways: 

1. Instead of one well defined Ewald sphere with 
radius R = l/A, a continuous distribution of Ewald 
spheres with Rmin ~ R < Rmax is present resulting in 
a simultaneous diffraction process for a large number 
of reciprocal-lattice vectors hi. Each vector hi selects 
its own Ewald sphere depending on its position in the 
reciprocal space. 

For the simultaneous registration of the reflections, 
a two-dimensional detector is necessary that allows the 
angular localization of the diffracted beams. In addition, 
the wavelength distribution within the diffracted beam 
has to be known. Approximately 17% (Cruickshank, 
Helliwell & Moffat, 1987) of all diffracted beams contain 
a series of nA related to the scattering vectors nh of the 
reflection (n = 1, 2, 3 . . . .  ). 

2. In contrast to the conventional monochromatic 
technique, a property of the crystal is utilized in another 
way. With the model for a real crystal composed of small 
mosaic blocks, the end point of the scattering vector h 
must be replaced by a small fragment of a spherical 
surface. Its shape is determined by the mosaic-block 
distribution of the crystal. 

With monochromatic radiation, scan procedures must 
be applied to obtain the integrated intensity originating 
from all mosaic blocks. In the case of white-beam 
diffraction, all mosaic blocks are in scattering position 
simultaneously since a bundle of Ewald spheres (close to 
the 'main' Ewald sphere for the reflection corresponding 
to h) is present. No scan process is necessary for the 
measurement of the integrated intensity provided that the 
detector is suitable to collect the entire diffracted beam. 

It is the basic idea of this paper to make use of 
the second point above concerning a single reflection 
h. In order to determine the wavelengths related to a 
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